PAIS GIRASOL

Identificación y Caracterización de Fuentes de Resistencia a la Podredumbre Húmeda del Capítulo de Girasol (Sclerotinia sclerotiorum) mediante Marcadores Moleculares.

Raimondi Juan¹, Fernández Paula², Peluffo Lucila², Paniego Norma², Pereyra Víctor¹, Hopp Esteban², Heinz Ruth², Escande Alberto¹ ¹ Grupo Girasol - EEA Balcarce INTA - ² Instituto de Biotecnología - INTA Castelar

En Argentina, la podredumbre húmeda del capítulo (PHC) es una de las entermedades más de-vastadoras del girasol, con una incidencia anual sobre la producción de la pampa húmeda del 10-20%. Si bien existen variedades más resistentes que otras, esta resistencia es parcial porque no pro-prociona protección completa al cultivo cuando las condiciones ambientales son muy favorables al de-sarrollo del hongo. En este trabajo describimos una iniciativa conjunta de INTA (Babarce y Castelar) y ASAGIRI, orientada a dientificar y combianr fuentes de resistencia a PHC, y evaluar sistemas de selec-ción efficientes para asistir a los programas de mejoramiento.

- identificación de distintas fuentes de resistencia a PHC
- detección de QTLs asociados a dicha resistencia

- desarrollo de estrategias útiles para la selección asistida
- integración de las distintas fuentes de resistencia en poblaciones base para comenzar un progra-ma de selección recurrente asistido por marcadores

Materiales

- ocho líneas endocriadas públicas de moderada resistencia (MR) al patógeno y una línea sus tible (S), y las generaciones F1 y F2 de los cruzamientos S x MR.
- tible (S), y las generaciones F1 y F2 de los cruzaniiones >
 marcadores microsatélites y ESTs desarrollados en el IB, INTA Castelar.

Las lineas MR y S en estudio se evaluaron en el campo en la EEA Balcarce INTA, durante la campaña 2002-2003. Se evaluaron 15-30 plantas de cada linea parental, y 90-130 plantas de cada F2, mediante inoculación artificial del capítulo (2500 esporas/capítulo) durante floración (estado R5.2). Los capítulos inoculados se taparon con bolsas de papel durante 7 días. Se evaluaron los siguientes componentes de la enfermedad.

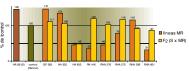
a. Incidencia: porcentaje de plantas enfermas;
b. severidad: porcentaje de plantas enfermas;
c. período de incubación: días desde inoculación hasta aparición de sintomas;
c. período de incubación: días desde inoculación hasta aparición de sintomas.
c. período de incubación: días desde inoculación hasta aparición de sintomas ca tres variables fueron ajustadas respecto a un testigo susceptible (cultivar hibrido Rancul), que fue sembrado de secalonado en el tiempo para poder reducir el efecto ambiental de las diferentes fechas de inoculación. Se estimó la intensidad de la enfermedad como el producto ((a) x (b))/100. La incidencia es analizón mediante un test de homogeneidad de proporciones, y el período de incubación mediante análisis de la varianza.

A diferentes períodos post-inoculación (0, 2, 4 y 15 días) se colectó tejido de capítulos inoculados y sin inocular de todas las lineas en estudio para el análisis de abundancia de transcriptos. Las muestras colectadas se congelaron inmediatamente en nitriógeno líquido, y se extrajo ARN total (Giagen, Alemania). El análisis de expressión por abundancia relativa de transcriptos se está efectuando mediante RT-PCF, empleando "primers" específicos diseñados a partir de las secuencias de ESTs aisladas previamente (Fernández y col. 2003). En una segunda etapa se realizarán análisis cuantitativos de abundancia de transcriptos por RT-PCR en tiempo real.

Se construyó además una colección de ADN copia diferencia la través de la técnica de hibridación substractivo (Diatchenko y col., 1996), utilizando el sistema PCR-Select CDNA Subtraction Kitê (Ciontech, EUA) de

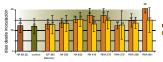
EST AN a	Función probable b		Organismo	
BU671801	Fructosyl transferase	P05065	Nicotiana paniculata	3E-44
BU671803	Cyclophilin protein	AF242312-1	Euphorbia esula	1E-17
BU671804	pit2 protein, Pi starvation	T03677	Nicotiana tabacum	3E-24
BU671805	Glycolate oxidase protein	D14044-1	Cucurbita sp.	5E-95
BU671806	Heat shock protein	AJ249331-1	Cucumis sativus	8E-40
BU671807	Putative beta-1,3-glucanase protein	AJ271598-1	Hieracium piloselloides	1E-37
BU671818	Leucine zipper-containing protein	U37437-1	Euphorbia esula	1E-47
BU671832	Psst70 stress 70 protein	X69213-1	Pisum sativum	6E-27
BU671840	Catalase protein	1906388A	Helianthus annuus	6E-88
BU671841	Homologous to plastidic aldolases pr	A84600	Solanum tuberosum	5E-29
BU671845	Magnesium chelatase subunit protein	AF026399-1	Glycine max	2E-34
BU671864	Plastidic aldolase protein	M32605-1	Nicotiana paniculata	1E-51
BU671866	Protoporphyrin IX:Mg chelatase prot	2404467A	Anthirrinum majus	0.00
BU671867	Oxygen-evolving enhancing protein	AP003203-10	Oryza sativa	5E-93
BU671886	Multicatalytic endopeptidase protein	CAA73619.1	Arabidopsis thaliana	4E-17
BU671887	Aquaporin 1 protein	Y08161-1	Nicotiana tabacum	5E-85
BU671888	Putative beta-1,3-glucanase protein	AL021713-18	Hieracium iloselloides	2E-17
BU671889	Germin-like protein	AF032973-1	Oryza sativa	8E-41
BU671904	1,2-beta-fructan 1F-fructosyltransferase protein	AJ009756-1	Helianthus tuberosus	E-59
BU671906	Polygalacturonase inhibitor protein	Z49063-1	Actinidia deliciosa	3E-42
BU671909	Lipid transfer protein precursor	S71564	Davidia involucrata	2E-37
BU671910	Lipid transfer protein (LTP)	AF195863-1	Gossypium hirsutum	0.00
BU671924	Cysteine protease	AJ245868-1	Medicago sativa	6E-16
BU671928	Cyclophilin protein	AF242312-1	Euphorbia esula	3E-17
BU671929	Putative zinc-protease protein	AC002339-10	Arabidopsis thaliana	9E-62
BU671946	Leucine zipper-containing protein	AL138655-2	Arabidopsis thaliana	3E-40
BU671948	Stress related putative protein	AC009606-5	Arabidopsis thaliana	3E-18
BU671954	mRNA for dehydrin related protein	X92650.1	Helianthus annuus	0.00
BU671955	Thaumatin-like protein	X15224-1	Nicotiana tabacum	3E-34
BU671960	Spermidine synthase 1 protein	AF375409-1	Hyoscyamus niger	6E-18
BU671972	Ankyrin-like protein	AB015474-2	Arabidopsis thaliana	8E-33
BU671977	Chloroplast Drought-induced Stress	Y09987-1	S. tuberosum	8E-41
BU671989	Cationic peroxidase protein	AF039027-1	Glycine max	2E-40
BU672016	mRNA for protease inhibitor	22759722	Zinnia elegans	3E-24
BU672102	Thioredoxin-like protein CDSP32	T07367	Solanum tuberosum	2E-56
BU672106	Cysteine Syntahse B (CSASE B)	D91040	Ralstonia solanacearum	2E-16

*Número de acceso en GenBank de las secuencias derivadas del proyecto EST de INTA.

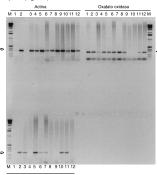

*Número de acceso de la secuencia en Deses de datos utilizando el programa BLASTX.

*Número de acceso de la secuencia en GenBank que presenta mavor similitud a la secuencia incónnita.

se espera comenzar con el primer ciclo de selección recurrente, eventualmente asistida con marc res, en 2004-2005.


Resultados

La floración de los materiales tuvo una amplitud de cinco semanas. La intensidad de la enferm dad del testigo fue diferente (p-0.01) entre distintas fechas de inoculación. Por ello, la incidencia pa cada material se calculo fealitua a lestigo; la misma fue diferente (p-0.01) entre líneas, y entre picciones P2. La severidad de la enfermedad fue cercana al 100% en todos los materiales, excepto las lineas RK 416 y RHA 801, que fue de aprox. 70%. Por ello, se presentan los datos de intensid-(incidencia x severidad; Fig. 1).



poblaciones F₂ de los cruzamientos S x MR.

La línea S presentó más enfermedad que el control. Algunas líneas MR presentaron la misma tendencia (GP 365, HA 302, RHA 299); en estos casos, el promedio de la F2 respectiva fue inferior al promedio de ambas líneas parentales (Fig. 1): intensidad de enfermedad que el testigo, notablemente las líneas RHA 801, RK 416, HA 853 y RHA 276. Las F2 respectivas mostraron distintas tendencias, lo que indicaria la acción de diferentes efectos génicos de los factores asociados a la resistencia parcial. Por ejemplo, le promedio de la F2 del cruzamiento S x HA 853 v Brat M3 silva en la F2 del cruzamiento S x HA 853 v Brat M3 silva en la F2 del cruzamiento S x HA 853 v Brat M3 silva en la F2 del cruzamiento S x HA 814, donde la resistencia parcial estaria determinada por factores recesivos. En otros casos (RHA 801, RHA 275, RHA 276), el promedio de la F2 se aproxima al promedio de las líneas parentales, indicando la preponderancia de efectos génicos adivisos (Fig. 1). Estos efectos génicos serán corroborados con los análisis fenotípicos y moleculares en la próxima campaña. Los periodos de incubación fueron diferentes entre líneas (F0-0.1). Las líneas MR que presentaron menor intensidad de la enfermedad (RHA 801, RK 416, RHA 276) q RHA 275) también presentaron los mayores periodos de incubación (Fig. 2), diciacndo la importancia de este componente de la resistencia parcial. En la próxima campaña se evaluará la relación entre ésta variable, y los porcentajes de cuerpos extraños y adidez del acelle.

A partir de una base de datos de ESTs tejido-específicos de girasol desarrollada previamente en el IB, INTA Castelar, se seleccionaron aproximadamente 30 ESTs relacionados con mecanismos de defensa a estreses bidioso y abidicos (Talba I), para los que se sintetizaron oligonucleotidos específicos (Porimers'). Actualmente se está realizando un estudio preliminar de abundancia de transcriptos de secuencias de oxalato oxidasa y proteina de transferencia de lipidos mediante TT-PCR. La obundancia de transcriptos es analizada con referencia a la expresión de genes constitutivos (actina en este caso). Para oxalato oxidasa se observaron resultados preliminares de interés en las filensa HA 275 y RHA 801 (dos de las lineas MR de mejor comportamiento), con una expresión inicial superior tanto en los controles sin inocular como en los primeros días post-inoculación respecto de la linea susceptible (Figura 3).

VPor otro lado, se construyó una colección de ADN copia diferencial de una línea MR (a partir de tejido obtenido al cuarto día post-inoculación), arrestada con mensajeros de la misma línea sin inocu lar, con el objetivo de aislar transcriptos inducidos en respuesta al proceso de infección. Se obtuvieror 370 clones recombinantes que están siendo analizados por secuenciación y análisis bioinformático Asimismo se construyó una colección de ADN copia reciproca de la anterior para estudiar represión génica durante el proceso de infección. La detección de transcriptos inducidos o suprimidos diren génica durante el proceso de infección. La detección de transcriptos inducidos o suprimidos diren cialmente aportará nuevas secuencias de interés para el análisis de fuentes de resistencia por abun

- Las líneas moderadamente resistentes presentarían distintos tipos de resistencia, evidenciados por las diferentes respuestas observadas en la poblaciones F2 de los cruzamientos S x MR.
- Se seleccionaron 30 secuencias relacionadas con resistencia a estreses bióticos y abióticos, y se sintetizaron oligonucleótidos específicos para estudios de abundancia de transcriptos de utilidad para la caracterización de las líneas parentales.
- Los estudios preliminares de abundancia de transcriptos por RT-PCR muestran diferencias en niveles de expresión para alguno de los transcriptos de interés, como los correspondientes a oxalato xoidasse en algunas lineas MR respecto de la linea S.

Referencias

Fernández P, Paniego N, Lew S, Hopp HE, Heinz R. (2003). BMC Genomics. Enviado para publi-

Diatchenko L, Lau YF, Campbell A.P, Chenchick A, Moqaddam F, Huang B, Lukyanov, S, Konstantin L, Gurskaya N, Sverdlov E, Siebert PD (1996) Proc. Natl. Sci. USA, 93, 6025-6030.

